
RELAXATIONAL FILTRATION 
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The relaxational phenomena arising in the filtration of real liquids due to 
silt deposition and suffosion by pores by particles suspended in filtrate are 
considered. 

It is known that nonsteady filtration of polymer solutions, heavy petroleum oils, and 
suspensions is accompanied by a series of relaxational effects [1-4]. The investigation of 
such processes is important in connection with many applied problems and, in particular, ~ with 
problems of petroleum extraction, amelioratio$ acoustic probing of liquid-saturated beds, etc. 

Relaxational phenomena in filtrational processes are usually taken into account by a 
purely phenomenological generalized Darcy's law, by assigning as relaxational form to it and 
introducing of the characteristic times, which are regarded as empirical constants [4-7]. 
However, for correct interpretation of relaxational processes, control of them, and a priori 
prediction, it is necessary to relate the structure of the correpsonding equations and the 
values of the parameters appearing there to the physical properties of the filtering liquid 
and the porous material. 

There may be very different reasons for the relaxational behavior of the filtrational 
fluxes. It is natural, first of all, to relate their appearance to elastoviscous properties 
of the filtrate. However, experiments show that the characteristic times of the filtrational 
fluxes, as a rule, are much greater than the corresponding values in viscosimetric flows, 
and depend strongly on the structure and physical properties of the porous medium; the values 
of these times may vary from tens of seconds to several hours [5, 6, 8-10]. 

It follows from experiment [5, 6, 8, i0] (see also the review in [9]) that relaxational 
phenomena are most noted in the filtration of heavy petroleum oils with an increased content 
of asphaltenes, resins, paraffins, etc. This allows the causes of relaxational effects to 
be related to silt deposition and suffosion in pores of impurity particles suspended in fil- 
trate, as well as adsorption of polymer macromolecules at pore walls. 

In [2], on the basis of microscopic represntations of the processes in pores, the influ- 
ence of adsorptional effects on unsteady filtration of polymer solutions is analyzed. In 
[9], a relaxational phenomena due to the clogging of pore channels by viscoelastic impurity 
particles were considered in detail from a phenomenological perspective. However, the rela- 
tion between the macroscopic characteristics of filtration and the microfeatures of the pro- 
cess was not analyzed in [9]. 

The aim of the present work is to analyze the influence of deposition and suffosion of 
impurity particles on the feaures of nonsteady filtration of a suspension. For maximum con- 
centration on phenomena due to the given mechanism, it is assumed that no other factors re- 
sponsible for relaxational effects are present. 

To simplify the calculation further, consideration is restructed to processes in the 
volume of the porous medium, assuming that it is infinite and ignoring the accumulation of 
impurity at the boundary of the medium and the inhomogeneity of its distribution in the vol- 
ume of the material. Note that the influence of such edge effects was considered in [ii, 12]. 

With the given assumptions, filtration may be described using the orindary Darcy's law 

V K (~) = ~ V P .  (1) 

The dependence of the permeability of the material on its porosity, as a rule, is fairly 
complex in form. Some descriptions of this dependence may be found in [13-15], for example, 
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below, for maximum simplicity of the mathematical calculations, it is assumed that the poros- 
ity is small, and model considerations lead to the result 

K (~) = ~ s .  ( 2 )  

Note  t h a t  Eq. (2 )  does  n o t  s a t i s f y  t h e  w e l l - k n o w n  Karman-Kozen i  f o r m u l a  a c c o r d i n g  t o  
which  K ( s )  ~ s 3 when e << 1. The a p p r o x i m a t i o n  in  Eq. (2 )  i s  made h e r e  w i t h  t h e  a im o f  m a x i -  
m a l l y  simple demonstration of the model here proposed and derivation of sufficiently general 
qualitative results. As is clear from what follows, the choice of a more correct dependence 
of K on s than that in Eq. (2) only complicates the calculations, without any qualitative 
change in the results. 

The processes of pore closure by impurity and opening of the pores is determined by the 
geometry of the pores and the impurity chunks, and also by the features of their interaction 
with the pore walls. In the predominant majority of cases, detailed information on these 
characteristics is unavailable, and thereforeit is natural to describe processes of deposition 
and suffosion by a probabilistic method. Suppose that each pore is a trap for impurity parti- 
cles. Then the porous medium may be regarded as a continuum of traps, each of which may be 
free or occupied. If the trap is occupied, there is no filtration through the corresponding 
pore. Note that pore closure may occur on account of the formation of layers of adsorbed 
impurity microparticles at the walls [16] (in this case, the particle sizes are much less 
than the sizes of the pore channels) and also on account of the "plugging" of a channel by 
a single sufficiently large particle. The first case may be investigated on the basis of the 
model of [2], proposed for the analysis of the influence of adsorption of polymer molecules 
on the filtration of the solution which contains them. The second mechanism of deposition 
is considered below. 

Introducing the probability W 0 of capture of at least one impurity particle by the trap 
and the probability W I of trap emptying in unit time, W 0 and W I depend on the geometry of 
the pores and particles, the particle concentration, the external-pressure gradient Vp, the 
features of particle interaction with the pore walls, etc. These dependences may be estab- 
lished experimentallly or theoretically on the basis of a model of the microstructure of the 
porous medium and the filtering liquid. Determining the form of W 0 and W l falls outside the 
scope of the present work. Therefore, with the aim of obtaining the fundamental results and 
subjecting them to physical analysis, it is assumed in the first approximation that 

Wo = ~o, WI = ~WP, ( 3 )  

where ~0 and ~i are empirical constants. The first relation in Eq. (3) means that capture 
of an impurity by the pores also occurs in the absence of filtrational fluxes, and the second 
reflects the fact that the pores may only be unblocked on account of breakaway of the impurity 
chunk under the head of filtrate. The model in Eq. (3) is evidently fairly rough for quanti- 
tative calculatons. However, it allows a series of important qualitative laws to be estab- 
lished; they may be refined for real processes by more correct choice of Eqs. (2) and (3). 

Suppose further that N o is the number of traps, equal to the number of pores, in unit 
volume of the medium; N is the number of free traps; N0-N is the number of occupied traps; 
and ~ is the mean pore volume. In this notation 

dN 
- - ( N  0 - N )  o l v p - N o 0 ,  V=kevp, ~N=e. (4) 

The first relation in Eq. (4) means that the change in free-trap concentration in unit 
time occurs on account of the emptying of occupied traps and the capture of impurity by free 
taps. The second relation is Darcy's law in Eq. (i) after taking account of Eq. (2), and 
the third is the definition of the porosity of the medium in terms of the pore concentration 
and their mean volume. Substitution of the third relation in Eq. (4) into the first gives 

d~ 
-- (So--S)~IVp--sOo,  V =  ksVp, So= ~No, (5 )  

dt 

where s o is the porosity available for filtration, when all the pore-traps are free. It is 
evident from Eq. (5) that each steady value of the pressure gradient Vp corresponds to a 
particular steady value of the porosity, and 

~IVP 
s~ = ~o ( 6 )  
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There is no fundamental difficulty in using Eq. (5) to analyze the dependence V(t) with 
arbitrarily varying 7p. For the sake of simplicity, the situation considered below is one 
often encountered in practice and in experiments, in which there is a jump in the external- 
pressure gradient 7p (or the flux V) from some initial value Vp ~ (or V ~ to the final value 
7p' (or V') at some time t ~ (t ~ = 0 is assumed below). The corresponding values of e c cal- 
culated from Eq. (6) are denoted by e~ and e~. 

Jump in Pressure Gradient 

In this case, it follows from the first relation in Eq. (5) that 

= s; + (~; - -  ~;) exp ( - -  hx'), ~' = @IVP' + ~0) -i. (7 )  

Using Eq. (7 )  in  t h e  s econd  r e l a t i o n  o f  Eq. ( 5 ) ,  i t  i s  found  t h a t  

o 

. L ,  vp. ( s )  
8c 

Th i s  r e s u l t  i s  now compared w i t h  t h a t  f o l l o w i n g  f rom t h e  p h e n o m e n o l o g i c a l  e q u a t i o n s  i n -  
t r o d u c e d  in  [ 4 - 7 ] .  C o n s i d e r i n g  t h e  c a s e  when t h e  f l u x  i s  d e s c r i b e d  by a s i n g l e  r e l a x a t i o n  
t i m e  xV, t h e  e q u a t i o n s  o f  [4 -7 ]  a r e  w r i t t e n  in  t h e  form 

(+) l + * v  V = k W p .  (9 )  

Assuming t h a t  xV, ~ = c o n s t  as  in  [ 4 - 7 ] ,  i t  f o l l o w s  f rom Eq. (9 )  w i t h  a d i s c o n t i n u o u s  
change  in  Vp f rom Vp ~ t o  Vp' t h a t  

V = ks [ 1 - -  exp ( - -  t/~v )1 VP. ( 10 ) 

I t  i s  e v i d e n t  t h a t  Eqs.  (8 )  and (10)  f o r m a l l y  c o i n c i d e  e x c e p t  f o r  some p r e e x p o n e n t i a l  
f a c t o r .  S e t t i n g  Vp ~ ~ = 0 in  Eq. (8 )  ( i . e . ,  a ssuming  t h a t  t h e  l i q u i d  i s  a t  r e s t  b e f o r e  t h e  
o n s e t  o f  d i s c o n t i n u i t y ) ,  Eqs.  (8 )  and (10)  c o m p l e t e l y  c o i n c i d e  f o r m a l l y .  Note ,  however ,  
t h a t  i f  in  Eq. ( 1 0 ) ,  as  in  [ 4 - 7 ] ,  ~V i s  assumed t o  be a c o n s t a n t  p a r a m e t e r  i n t r i n s i c  t o  t h e  
s y s t e m ,  t h e  r e l a x a t i o n  t i m e  ~' in  Eq. ( 8 ) ,  as  i s  e v i d e n t  f rom Eq. ( 7 ) ,  depends  on t h e  f i n a l  
p r e s s u r e  g r a d i e n t  Vp ' :  x '  d e c r e a s e s  w i t h  i n c r e a s e  in  Vp ' .  T h i s  means ,  in  p a r t i c u l a r ,  t h a t ,  
if the pressure gradient increases initially from 7p ~ to 7p' and then returns to 7p ~ the 
time to establish a steady state in the second case is greater than in the first. In experi- 
ments, this may be interpreted as a hysteresis-type dependence of V on Vp. Note that such 
hysteresis was recorded experimentally in [8, i0]. 

The steady (as t + =) dependence of V on 7p is now investigated. Simple analysis of 
Eqs. (6) and (8) shows that, in this case, the dependence V = kecV p takes the form shwon 
schematically in Fig. i. If the experimental conditions are such that their results lie on 
the curve in Fig. 1 close to the asymptote, which is the case when miVp >> m0, extrapolation 
to small Vp gives an intercept on the abscissa of length equal to m0/~l. This may be inter- 
preted as the presence of a limiting pressure gradient. 

Discontinuity in Flow Rate 

Now suppose that the liquid flow rate changes discontinuously from V ~ to V', and the 
pressure gradient relaxes to a variable state. 

Substituting the second relation in Eq. (5) into the first, integration leads to an 
equation for determining e 

E + o ~, + e l  
= _ ~  + ~%' - -  ~o%') 

<-01 , Y ?= V ,  a =  
ko) o �9 -V? 2+4%? 

g~ = ~, - -  V% ,z + 4~o~,, ~ = v + -V~,", + 4so%,, 

e x p  (-- o~ot), 

(ll) 
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Fig. i Fig. 2 

Fig. 1. Steady dependence of the flux V on the applied-pressure gradient Vp accord- 
ing to Eqs. (4) and (5) with ~ = E c calculated from Eq. (6) (continuous curve); the 
dashed curve is the asymptote; tan e = k~ 0. 

Fig. 2. Relaxation of pressure gradient Vp to the equilibrium values Vp' and Vp~ 
with discontinuous change in the flux V from V ~ to V' and V~ (curves 1 and 2, re- 
spectively) according to Eqs. (4) and (Ii): Vp~ = k~V~ VD~ = k~V~ (i = i, 2), 
where ~c' ~ gc' are calculated from Eqs. (6) with Vp = k~V ~ and Vp = kE~Vi; V I < 
V 2 is assumed in the calculations. 

where g~ is the steady value of the porosity determined from Eq. (6), where Vp is replaced 
by the steady pressure gradient Vp ~ = V~ corresponding to the initial flow-rate value V ~ 

The algebraic Eq. (ii) may only be solved numerically. The results of numerical cal- 
culation of the dependence of Vp on t are shown schematically in Fig. 2. Note that, as is 
evident from Eq. (ii), the relaxation time in this case if ~" = m~1 Here ~" > ~', where 
T' is determined from Eq. (7), and therefore with discontinuous change in the flow rate 
steady conditions of filtration are established more slowly than with jump in the pressure. 
This conclusion is qualitatively confirmed by the experimetnal results of [8, i0]. 

Note that, as follows from Eqs. (2) and (6), the steady permeability k~ c corresponding 
to steady flow increases with increase in Vp and hence V. In [2], in analyzing the filtra- 
tion of polymer solution, the opposite conclusion was reached. This difference is explained 
in that the growth rate of the polymer adsorbate covering the pore channels and the intensity 
of "clogging" of the pores by impurity particles depend differently on the flow rate of fil- 
trate. In addition, no account was taken in [2] of the possibility of breakdown of the poly- 
mer layer at the pore walls and hence of opening of the pore channels on account of hydro- 
dynamic stress in the filtering liquid. 

The quantity m0 determined in Eq. (3) is the probability of capture of at least one part- 
icle by the trap. In solving a series of problems, it is more expedient to take the probabil- 
ity of capture of a single isolated particle ~ as the basis, isolating the explicit dependence 
on the impurity-particle concentration in m0- 

Suppose that there are n particles in unit volume of liquid. Then, in the pore volume, 
the corresponding number is 8n. Assuming that all the particles are the same, and using the 
well-known results of probaiblity theory, the following relation is obtained 

% = ~n~0. (12) 

If Eq. (12) is now substituted into Eqs. (7) and (ii), the deplendence of the relaxation 
time on the impurity-particle concentration in the filtrate is estimated. 

Thus, the proposed model of a continuum of traps leads sufficiently simply to an important 
qualitative conclusion regarding the features of nonsteady filtration due to silt deposition 
and suffosion of impurity: these processes lead to relaxational phenomena; the characteristic 
times are, generally speaking, operational parameters and depend on the impurity orocess in 
the filtrate. Steady filtration does not conform to Darcy's law and is nonlinear in character. 
Within the framework of the given model, it is simple to obtain quantitative results. This 
entails replacing Eqs. (2) and (3) by more accurate relations - for example, the Karman-Kozeni 
formula in place of Eq. (2). The difficulties arising here are exclusively of computational 
type. 
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Regrettably, the known experimental data on relaxational filtration of petroleum oils 
do not permit unique determination of the quantities W0, Wl, ~0, ml, and m~ introduced here 
nor the elucidation of whether these relaxational phenomena are processes of deposition and 
suffosion. Goal-directed experiments are required to resolve these questions, and their re- 
suits must be compared with estimates obtained from theoretical calculations. However, if 
it is known a priori that disruption of Darcy's law may be explaiend solely by blocking of 
the pores by impurity (as, for example, in the flow of suspensions through finely porous 
filters), the filtration process may be completely described using the method here proposed. 

Note, in conclusion, that, as follows from Eq. (5), filtration ceases instantaneously 
(V = 0) when Vp vanishes, within the framework of the proposed model. This contradicts the 
well-known data on the filtration of petroleum oils and polymer solutions, and indicates that 
deposition and suffosion do not determine all the relaxational effects. Sufficiently complete 
description of relaxational filtation entails theoretical and experimental investigation of 
the features of elastoviscous behavior of liquids with impurities in small pores and narrow 
slots, as well as in the interaction of real liquids wiht a solid frame, which will form the 
subject of separate investigations. 

NOTATION 

K(e), permeability; k, coefficient introduced in Eq. (2); p, pressure; V, flux; t, time; 
e, porosity; e 0 and s as defined in Eqs. (5) and (6), respectively; e ~ and e', steady poros- 
ity values before and after pressure (or flow) discontinuity; ~, viscosity of filtrate; ~', 
as defined in Eq. (7); ~0 and ~i, as defined in Eq. (3); ~, probability of the capture of 
one particle in unit time. 
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